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Abstract

Effect of mass transfer on the transient free convection flow of a dissipative fluid along a semi-infinite vertical plate in

presence of constant heat flux, is studied by solving coupled non-linear system of partial differential equations, using

Crank–Nicolson technique which is stable and convergent. Transient temperature, concentration and velocity profiles,

local and average skin-friction, Nusselt number and Sherwood number are shown graphically for air. The effects of e,
viscous dissipative parameter, Schmidt number, buoyancy ratio parameter on the transient state are discussed.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many papers have been published on steady free

convection flow of a viscous incompressible fluid along a

semi-infinite vertical plate because of its wide industrial

applications. These are discussed in a book published by

Gebhart et al. [1]. In the absence of viscous dissipation,

the earliest solution to this problem was presented by

Pohlhausen [2] using momentum integral method

whereas the numerical solution to similarity equations

was first presented by Ostrach [3], assuming isothermal

plate. But Gebhart [4], first showed the importance of

viscous dissipation in free convection flow along a semi-

infinite vertical isothermal plate and presented a simi-

larity solution by defining a dissipation parameter

e ¼ gbL=cp, which is the ratio of the kinetic energy of the

flow to the heat transferred to the fluid.

Another problem of interest is, unsteady free con-

vection (also known as transient free convection) flow

along a vertical semi-infinite isothermal plate. In this

case, it is important to know the time required for the

unsteady flow to reach steady state. The first attempt in

this direction was made by Callahan and Marner [5] who

solved the non-linear system of equations by explicit fi-

nite difference scheme. The solution by this technique is

not always convergent and one has to establish the

convergence for stability of this explicit finite difference

scheme. Callahan and Marner [5] also considered the

presence of mass transfer and showed that the explicit

finite difference scheme was convergent and stable for

Prandtl number unity and Schmidt number Sc ¼ 0:2,
0.7, 7.0. However, the Schmidt number Sc of foreign

masses for air (Pr ¼ 0:71) and water (Pr ¼ 7:0) is quite

different for different substances and hence Callahan and

Marner�s [5] analysis is rather restricted. Also their ex-

plicit finite difference scheme was not shown to be con-

vergent and stable for Pr 6¼ 1:0 Soundalgekar and

Ganesan [6] restudied the same problem by implicit fi-

nite difference scheme which is always stable and con-

vergent for all values of the Prandtl number and

compared their results with those of Callahan and

Marner [5] and the agreement was excellent.

Later on, Soundalgekar and Ganesan [7–9] studied

the problem of transient free convection flow along a

semi-infinite vertical plate under different conditions. In
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their paper [7], transient free convection flow along an

isothermal semi-infinite vertical plate was studied, and in

the paper [8], the effects of mass transfer on the transient

free convection flow along an isothermal plate were

studied whereas in the paper [9], the transient free con-

vection flow along a semi-infinite vertical plate in the

presence of constant heat flux was studied. Again in all

these papers, the stability and convergence of the im-

plicit finite difference scheme was separately established.

In another paper by Soundalgekar et al. [10], the effects

of viscous dissipative heat on the transient free convec-

tion flow along a semi-infinite isothermal plate were

studied. Because of technological importance it is now

proposed to study the effects of mass transfer on the

transient free convection flow of a dissipative fluid along

a semi-infinite vertical plate in the presence of a constant

heat flux. The non-linear system of partial differential

equations are solved by implicit finite difference scheme

of Crank–Nicolson type and the effects of mass transfer

and viscous dissipative heat on time to reach the steady

state are studied. In Section 2, the mathematical analysis

is presented and in Section 3, the conclusions are setout.

2. Mathematical analysis

We consider the flow of a viscous incompressible

fluid containing foreign mass like CO2, H2O (water

vapor) etc. past a semi-infinite vertical plate such that

the plate, fluid and the foreign mass are at the same

temperature T1 and the concentration level C1. At time

t0 > 0, the plate is supplied heat at constant rate and the

concentration level near the plate is raised from C1 to

Cw. The x-axis is taken along the plate in the vertically

upward direction and the y-axis is taken normal to the

plate. Then under the usual Boussinesq�s approximation,

with low concentration level, the flow can be shown to

be governed by following boundary layer equations:

ou
ox

þ ov
oy

¼ 0 ð1Þ

ou
ot0

þ u
ou
ox

þ v
ou

oy
¼ m

o2u
oy2

þ gbðT � T1Þ þ gb	ðc� c1Þ

ð2Þ

oT
ot0

þ u
oT
ox

þ v
oT
oy

¼ a
o2T
oy2

þ l
qcp

ou
oy

� �2

ð3Þ

oc
ot0

þ u
oc
ox

þ v
oc
oy

¼ D
o2c
oy2

ð4Þ

with the following initial and boundary conditions:

t0 6 0; u ¼ 0; v ¼ 0; T ¼ T1; c ¼ c1; for all y
t0 > 0; u ¼ 0; v ¼ 0; T ¼ T1; c ¼ c1; at x ¼ 0

u ¼ 0; v ¼ 0;
oT
oy

¼ �q
k

; c ¼ cw; at y ¼ 0

u ¼ 0; T ! T1; c ! c1 as y ! 1
ð5Þ

All the physical variables are defined in the Nomencla-

ture.

Nomenclature

c species concentration in fluid

c1 species concentration in fluid far away from

the plate

cw species concentration at the plate

C non-dimensional species concentration

cp specific heat at constant pressure

D chemical molecular diffusivity

GrL Grashof number

Grc modified Grashof number

g acceleration due to gravity

K thermal conductivity

L length of the plate

NuXL local Nusselt number

NuX average Nusselt number

N buoyancy ratio parameter

Pr Prandtl number

ShXL local Sherwood number

ShX average Sherwood number

Sc Schmidt number

T temperature of the fluid

T1 temperature of the fluid far away from the

plate

Tw plate temperature

t0 time

t non-dimensional time

u, v velocity components in the x and y-direc-
tions

U , V non-dimensional velocity components

X , Y coordinates axes

b coefficient of volume expansion

b	 volumetric coefficient of expansion with

concentration

l dynamic viscosity

m kinematic viscosity

q density

a thermal diffusivity K=qcp
sL local skin-friction

�ss average skin-friction

e dissipation parameter

h non-dimensional temperature
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We now introduce the following non-dimensional

quantities:

U ¼ uL
mGr1=2

; V ¼ vL
mGr1=4

; X ¼ x
L

Y ¼ y
LGr�1=4

; h ¼ T � T1
qL=kGr1=4

; C ¼ c� c1
cw � c1

Gr ¼ gbL4q
km2

; Pr ¼ m
a
; Sc ¼ m

D
; e ¼ gbL

cp

N ¼ b	ðcw � c1Þk
bqL

; t ¼ t0mGr1=2

L2

ð6Þ

in Eqs. (1)–(5) which then reduce to following:

oU
oX

þ oV
oY

¼ 0 ð7Þ
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oY 2
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o2h
oY 2
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ð9Þ
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þ V
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oY

¼ 1

Sc
o2C
oY 2

ð10Þ

where e ¼ gbL=cp is a dissipation parameter as intro-

duced by Gebhart [4]. The initial and boundary condi-

tions are now

t6 0; U ¼ V ¼ h ¼ C ¼ 0

t > 0; U ¼ V ¼ h ¼ C ¼ 0 at X ¼ 0

U ¼ V ¼ 0;
oh
oY

¼ �1; C ¼ 1 at Y ¼ 0

U ¼ h ¼ C ¼ 0 as Y ! 1

ð11Þ

We now have to solve the coupled non-linear partial

differential equations by an implicit finite difference

method of the Crank–Nicolson type. Taking length of

the semi-infinite plate as L ¼ 1, we consider a rectan-

gular region with X varying from 0 to 1 and Y varying

from 0 to Ymax ¼ 16, where X ¼ 1 corresponds to the

height of the plate and Ymax is regarded as 1. It is en-

sured that Ymax lies well outside the momentum and

thermal boundary layers. We now divide X and Y -
directions into M and N grid-spacing respectively. We

select mesh size in the X and Y -directions as follows:

DX ¼ 0:05

DY ¼ 0:25

Dt ¼ 0:01
ð12Þ

The implicit finite difference equation of Crank–Nicol-

son type corresponding to Eq. (9) is

hnþ1
i;j � hni;j

Dt
þ
Un
i;j

2

hnþ1
i;j � hnþ1

i�1;j þ hni;j � hni�1;j
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" #

þ
V n
i;j

4
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i;jþ1 � hnþ1

i;j�1 þ hni;jþ1 � hni:j�1

DY

" #

¼ 1

2Pr

hnþ1
i;j�1 � 2hnþ1

i;j þ hnþ1
i;jþ1 þ hni;j�1 � 2hni;j þ hni;jþ1

ðDY Þ2

" #

þ eGr1=4
Un
i;jþ1 � Un

i;j

DY

� �2
ð13Þ

The boundary condition oh=oY ¼ �1 takes the follow-

ing form

hnþ1
i;1 � hnþ1

i;�1 þ hni;þ1 � hni;�1

4DY
¼ �1 ð14Þ

From Eqs. (13) and (14), we have

hnþ1
i;0 � hni;0

Dt
¼ 1

Pr

2DY þ hnþ1
i;1 þ hni;1 � hnþ1

i;0 � hni;0
ðDY Þ2

" #

þ eGr1=4
Un
i;1 � Un

i;0

DY

� �2
ð15Þ

Eq. (15) now reduces to

A1h
nþ1
i;j�1 þ B1h

nþ1
i;j þ D1h

nþ1
i;jþ1 ¼ E1 ð16Þ

where

A1 ¼ �
V n
i;j

4DY
� 1

2PrðDY Þ2

B1 ¼
1

Dt
þ

Un
i;j

2DX
þ 1

PrðDY Þ2

D1 ¼
V n
i;j

4DY
� 1

2PrðDY Þ2
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1

Dt
hni;j þ
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i;j

2

hnþ1
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DX

" #

� Vi;j
4

hni;jþ1 � hni;j�1

DY

� �
þ 1

2Pr

hni;j�1 � 2hni;j þ hni;jþ1

ðDY Þ2

" #

þ eGr1=4
Un
i;jþ1 � Un

i;j

DY

� �2

Similarly, the finite difference equation corresponding to

differential equation (10) reduces to

A2Cnþ1
i;j�1 þ B2Cnþ1

i;j þ D2Cnþ1
i;jþ1 ¼ E2 ð17Þ

where

A2 ¼ �
V n
i;j

4DY
� 1

2ScðDY Þ2
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B2 ¼
1

Dt
þ

Un
i;j

2DX
þ 1

ScðDY Þ2

D2 ¼
V n
i;j

4DY
� 1

2ScðDY Þ2

E2 ¼
1

Dt
Cn
i;j þ

Un
i;j

2

Cnþ1
i�1;j � Cn

i;j þ Cn
i�1;j

DX

" #

� Vi;j
4

Cn
i;jþ1 � Cn

i;j�1

DY

� �

þ 1

2Sc

Cn
i;j�1 � 2Cn

i;j þ Cn
i;jþ1

ðDY Þ2

" #

Again, the finite difference equation corresponding to

Eq. (8) is

A3Unþ1
i;j�1 þ B3Unþ1

i;j þ D3Unþ1
i;jþ1 ¼ E3 ð18Þ

where

A3 ¼ �
V n
i;j

4DY
� 1

2ðDY Þ2

B3 ¼
1

Dt
þ

Un
i;j

2DX
þ 1

ðDY Þ2

D3 ¼
V n
i;j

4DY
� 1

2ðDY Þ2

Fig. 1. Transient temperature profiles X ¼ 1:0, Pr ¼ 0:733, N ¼ 2:0.
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E3 ¼
1

Dt
Un
i;j þ

Un
i;j

2
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4
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Then the finite difference equation corresponding to Eq.

(7) is

V nþ1
i;j ¼ E4 ð19Þ

where

E4 ¼ V nþ1
i;j�1 � V n

i;jþ1 þ V n
i;j�1 �

DY
2DX

Unþ1
i;j

h
� Unþ1

i�1;j þ Un
i;j

� Un
i�1;j þ Unþ1

i;j�1 � Unþ1
i�1;j�1 þ Un

i;j�1 � Un
i�1;j�1

i
The initial and boundary conditions now take the fol-

lowing form

U 0
i;j ¼ 0; Un

i;0 ¼ 0; Un
0;j ¼ 0; Un

i;N ¼ 0

V 0
i;j ¼ 0; V n

i;0 ¼ 0; V n
0;j ¼ 0

C0
i;j ¼ 0; Cn

i;0 ¼ 1; Cn
0;j ¼ 0; Cn

i;N ¼ 0

h0
i;j ¼ 0;

hnþ1
i;1 � hnþ1

i;�1 þ hni;þ1 � hni;�1

4DY
¼ �1

hn0;j ¼ 0; hni;N ¼ 0

ð20Þ

Here the subscript i designates the grid-point with X -
coordinate

Pi
k¼1 DXk , j designates the grid-point with Y -

coordinate
Pj

k¼1 DYk , and the subscript n designates a

value of time t ¼ nDt.
Now during the computations, the coefficients Un

i;j,

V n
i;j appearing in Eqs. (16) and (17) are treated as con-

stants during a given time-step. The values of U , V , h
and C are known at all grid-points at s ¼ 0 from the

initial conditions. We then calculate the values of U , V ,
h and C at s ¼ Dt as follows:

On the line i ¼ 1, Eq. (16) constitutes a tridiagonal

system of equations for j ¼ 1 to N � 1 in N � 1 un-

knowns, which are solved by using the Thomas algo-

rithm described in Carnahan et al. [11].

We have thus computed the values of h, C and then

U on the line i ¼ 1. This helps us to compute the values

of V from Eq. (19). This procedure is repeated for

finding the values of h, C, U and V on all i-lines.
In this way, the procedure is repeated for n ¼ 2;

3; 4; . . . until the steady state is reached. The steady

state is determined when the difference between

two consecutive values of U or h or C or V is less than

10�6.

We have computed the time required to reach the

steady state for different values of N , Gr, Sc and e when
Pr ¼ 0:733 (air). Here N is the buoyancy ratio force and

is known as aiding force when N > 0 and opposing one

when N < 0. We are considering here only values of

N > 0. Also, the Schmidt number Sc for air is defined by

Gebhart and Pera [12], and we have taken only

Sc ¼ 0:30 and 0.78. The numerical values of U , h and C
are computed at X ¼ 1:0 only. Initially time step Dt was
chosen as 0.02 and time required to reach steady state

was calculated. Then to check the accuracy of the result,

Fig. 2. Transient temperature profiles X ¼ 1:0, Pr ¼ 0:733, Sc ¼ 0:78, Gr ¼ 104.
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Dt was chosen as 0.01 and 0.04. The time required to

reach steady state remained unchanged.

In Fig. 1(a), transient temperature profiles are shown

at X ¼ 1 and for different values of Sc, e and their effect

on time to reach steady state. We observe from this

figure that in the absence of viscous dissipation heat,

time required to reach steady state for Sc ¼ 0:30, or 0.78
is either t ¼ 4:6 and 6.4 respectively whereas in the

presence of viscous dissipative heat, it is t ¼ 4:8 and 6.8.

Hence we conclude that time required to reach steady

state is more when viscous dissipative heat is present.

Also time to reach steady state is more as Sc increases. In
Fig. 1(b), the effect of Grashof number on time to reach

steady state is shown and we conclude that in the ab-

sence of viscous dissipative heat, time required to reach

steady state is slightly affected by an increase in the

Grashof number but in the presence of viscous dissipa-

tive heat, an increase in Grashof number leads to an

increase in the time to reach steady state, which is quite

significant.

Fig. 3. Transient concentration profiles X ¼ 1:0, Pr ¼ 0:733, N ¼ 2:0.
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Again from Fig. 1(a) and (b), we observe that the

transient temperature increases due to greater viscous

dissipative heat, which is to be expected.

In Fig. 2, the effect of the buoyancy force and dissi-

pation parameter on the transient temperature field is

shown. In the absence of dissipation heat the steady

state temperature is attained at t ¼ 6:4 when N is large

whereas it is attained at t ¼ 10:0 when N is small. These

results can be used in technological designs. Hence we

conclude that in the absence of dissipative heat, time

required to reach steady state decreases as the buoyancy

force increases. However, at large value of N time re-

quired to reach steady state is more in the presence of

viscous dissipative heat as compared to that in the ab-

sence of viscous dissipative heat. But at small value of N
time required to reach steady state is less in the presence

of viscous dissipative heat as compared to that in the

absence of viscous dissipative heat.

Transient and steady state concentration profiles are

shown for N ¼ 2:0, Gr ¼ 104 and for different values of

Sc, e In Fig. 3(a), we observe that an increase in the

Schmidt number leads to a decrease in the concentra-

tion. It takes more time to reach steady state in the

presence of viscous dissipative heat. Time taken to reach

steady state increases with increasing Sc. In Fig. 3(b),

concentration profiles are shown for different values of

Gr and e. We observe from this figure that the Grashof

number does not affect the steady state time, it takes

more time to reach steady state when viscous dissipative

heat is present. In Fig. 4, concentration profiles are

shown for different values of the buoyancy ratio force

(aiding force). We observe from this figure that time

required to reach steady state is more when value of

buoyancy force parameter N is less. Also an increase in

N leads to a fall in the concentration.

Transient and steady state velocity profiles are shown

in Fig. 5(a), (b) and Fig. 6. We observe from Fig. 5(a),

that an increase in the Schmidt number Sc leads to a

decrease in the transient velocity. Time required to reach

steady state is more when viscous dissipative heat is

present or when Schmidt number is large. From Fig.

5(b), we observe that an increase in Grashof number

leads to a fall in the transient velocity, but the steady

state is reached late in time when the Grashof number is

high and there is no viscous dissipative heat. However,

in the presence of viscous dissipative heat, time required

to reach steady state is more when Grashof number is

large. The effect of buoyancy force is seen in Fig. 6. We

observe from this figure that an increase in the buoyancy

force N leads to an increase in the transient velocity.

Also, time required to reach steady state is more when

viscous dissipative heat is present. However, at small

value of N time required to reach steady state is more in

the presence of viscous dissipative heat as compared to

that in the absence of viscous dissipative heat.

We now study the effects of viscous dissipative heat

and the mass transfer on the local and average skin-

friction, which is given by

sL ¼ 1

Gr1=4
oU
oY

� �
y¼0

ð21Þ

�ss ¼ 1

Gr1=4

Z 1

0

oU
oY

� �
y¼0

dX ð22Þ

Fig. 4. Transient concentration profiles X ¼ 1:0, Pr ¼ 0:733, Gr ¼ 104, Sc ¼ 0:78.
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The numerical values of sL, local skin-friction

is evaluated by using five-point approximate for-

mula for the derivative in (21) and this is shown

in Fig. 7. It is observed from this figure that an in-

crease in the buoyancy force N leads to an in-

crease in sL. Greater viscous dissipative heat also

causes a rise in the local skin-friction. An increase in

Gr leads to a fall in the local skin-friction. Local

skin-friction decreases as the Schmidt number Sc in-

creases.

To evaluate the average skin-friction from (22), the

integrand is approximated by a five-point formula and

then the integral is evaluated by using Newton–Cotes

closed integration formula and these are shown in Fig. 8.

We observe from this figure that due to greater viscous

dissipative heat, there is an increase in the average skin-

friction, but average skin-friction decreases with in-

creasing the Schmidt number or Grashof number. Again

due to greater buoyancy ratio parameter, the average

skin-friction increases.

Fig. 5. Tansient velocity profiles X ¼ 1:0, Pr ¼ 0:733, N ¼ 2:0.
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We now study the local and average Nusselt number

Nu, which is defined as

NuXL ¼ Gr1=4
X
hw

ð23Þ

NuX ¼ Gr1=4
Z 1

0

dX
hw

ð24Þ

We have computed numerical values of steady state

local Nusselt number and these are plotted in Fig. 9. We

observe from this figure that local Nusselt number de-

creases due to the presence of viscous dissipative heat. In

the absence of viscous dissipative heat, an increase in

buoyancy ratio parameter N leads to an increase in the

local Nusselt number, but in the presence of viscous

dissipative heat, local Nusselt number decreases due to

the buoyancy ratio parameter N .
An increase in Gr also leads to a decrease in the

local Nusselt number. In the absence of viscous dissi-

pative heat, an increase in the Schmidt number leads to

Fig. 7. Steady state local skin friction, Pr ¼ 0:733.

Fig. 6. Transient velocity profiles X ¼ 1:0, Pr ¼ 0:733, Gr ¼ 104, Sc ¼ 0:78.
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a decrease in the local Nusselt number whereas in

the presence of viscous dissipative heat, the local Nus-

selt number increases with increasing the Schmidt

number.

In Fig. 10, the Average Nusselt number is shown. It is

seen from this figure that the average Nusselt number

decreases due to greater viscous dissipative heat. It in-

creases with increasing the buoyancy ratio parameter N

in the absence of viscous dissipative heat but decreases

with increasing N in the presence of viscous dissipative

heat. Due to increasing the Grashof number Gr, average
Nusselt number decreases. In the absence of viscous

dissipative heat, average Nusselt number decreases due

to increasing the Schmidt number but in the presence of

viscous dissipative heat average Nusselt number in-

creases with increasing the Schmidt number.

Fig. 8. Average skin friction, Pr ¼ 0:733.

Fig. 9. Steady state local Nusselt number, Pr ¼ 0:733.
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We now study the local and average Sherwood

number, which is defined as

ShXL ¼ � oC
oY

� �
y¼0

Gr1=4

ShX ¼ �Gr1=4
Z 1

0

oC
oY

� �
y�0

dX
ð25Þ

In Fig. 11, the local Sherwood number is shown and

we observe from this figure that an increase in the

buoyancy ratio parameter N or dissipation number e
leads to an increase in the local Sherwood number. But

the local Sherwood number decreases due to increasing

the Grashof number. Again the local Sherwood number

increases due to increasing the Schmidt number.

The average Sherwood number is shown in Fig. 12. It

is seen from this figure that the average Sherwood

number increases due to greater viscous dissipative

heat. It increases with increasing the buoyancy ratio

Fig. 11. Steady state local Sherwood number, Pr ¼ 0:733.

Fig. 10. Average Nusselt number, Pr ¼ 0:733.

M.Y. Gokhale, F.M. Al Samman / International Journal of Heat and Mass Transfer 46 (2003) 999–1011 1009



parameter N . However, Grashof number does not affect

Sherwood number. Sherwood number increases with

increase in the Schmidt number.

3. Conclusions

(1) Time required to reach steady state temperature is

more with viscous dissipation and also with increase

in Sc the Schmidt number.

(2) In the absence of viscous dissipation time required

to reach steady state temperature is slightly affected

by increasing the value of Grashof number. But in

the presence of viscous dissipative heat, an increase

in Grashof number leads to an increase in the time

to reach steady state, which is very significant.

(3) As the buoyancy force increases, there is a decrease

in the time to reach steady state.

(4) In the presence of viscous dissipative heat, more time

is required to reach the steady state temperature,

than that in the absence of viscous dissipative heat

for large value of N .
(5) An increase in the Schmidt number leads to a de-

crease in concentration.

(6) Time required to reach steady state concentration

increases with increase in Schmidt number and it

also increases with viscous dissipation.

(7) Grashof number does not affect the time to reach

steady state concentration.

(8) Time required to reach steady state concentration is

more when the value of buoyancy force parameter N
is less.

(9) An increase in Sc leads to a decrease in transient ve-

locity.

(10) Time required to reach steady state velocity is more

when viscous dissipative heat is present or Schmidt

number is large.

(11) An increase in Grashof number leads to a fall in the

transient velocity.

(12) The steady state velocity is reached late in time

when the Grashof number is high.

(13) Greater viscous dissipative heat causes a rise in

local as well as average skin-friction, but there is

a fall in these values as Schmidt number Sc in-

creases.

(14) Local and average Nusselt numbers decrease with

greater viscous dissipative heat.

(15) Local and average Sherwood numbers increase

slightly due to presence of viscous dissipative heat,

but there is substantial rise in their values with an

increase in the value of Schmidt number.
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